
Flow-Based Programming:
Why You Should Care

Even If You Never Plan To Use It

OpenWest 2015

Samuel M Smith PhD
sam@ioflo.com

mailto:sam@ioflo.com

Reputation on the blockchain - it's time to get real.
worldtable.co

sam@worldtable.co

http://worldtable.co
mailto:sam@worldtable.co

Computational reputation on the blockchain
to modulate the internet of interactions.

Open source decentralized platform

openreputation.net
https://github.com/OpenReputation

https://openreputation.net
https://github.com/OpenReputation

Flow-Based Programming Framework
github.com/ioflo/ioflo

ioflo.com

https://github.com/ioflo/ioflo
http://ioflo.com

Flow-Based Programming (FBP)
• Originated in 1970’s by J.P. Morrison, contemporary with OOP & FP

• Relatively unknown but a lot of interest recently

• Use it via a programming style, pattern, paradigm, or framework, not a language

• An FBP architecture may still be really useful even when not using an FBP Framework

• Distributed concurrent applications benefit most from FBP

• FBP is a simplifying unifying paradigm

• An FBP mindset may provide unique solution insights even when using OOP or FP

• Think general-purpose data-flow programming

Flow-Based Programming Resources
Flow-Based Programming, 2nd Ed. May 14, 2010
http://www.jpaulmorrison.com/fbp/
http://www.jpaulmorrison.com/fbp/links_external.html
https://flowbasedprogramming.wordpress.com/article/flow-based-programming/

Port Automata/ Port Based Objects

SoftwareComponentsForRealTime, Stewart 2000

Port Automata and the Algebra of Concurrent Processes, Steenstrup & Arbib 1982

http://www.jpaulmorrison.com/fbp/
http://www.jpaulmorrison.com/fbp/links_external.html
https://flowbasedprogramming.wordpress.com/article/flow-based-programming/
http://kurser.iha.dk/eit/tidrts/SupplementingCourseMaterial/SoftwareComponentsForRealTime.pdf
https://www.researchgate.net/profile/Michael_Arbib/publication/222616999_Port_automata_and_the_algebra_of_concurrent_processes/links/00463529e861b7f5aa000000.pdf

Flow-Based Programming Frameworks
Javascript

Flux

Python

Pypes
PyFconstructables.es

Expecco
Other

tion between objects is based on a
structured blackboard design that
operates as follows.

When a process needs information,
it obtains the most recent data avail-
able from its input ports. This port can
be viewed metaphorically as a window
in your house; whatever you see out
the window is what you get. There is
no synchronization with other process-
es and there is no knowledge as to the
origin of the information that is
obtained from this port.

When a process generates new
information that might be needed by
other processes, it sends this infor-
mation to its output ports. An output
port is like a door in your home; you
can open it, place items outside for
others to see, then close it again. As
with the input ports, there is no syn-
chronization with other processes,
nor do you know who might look at
the information placed on the out-
put ports.

In addition to the independent
process, the object is selected as an ele-
mental software abstraction. As stated
by Wegner, an object is the atomic
unit of encapsulation, with opera-
tions that control access to the
data.[21] The term object does not
imply “object-oriented design,” which
is an extension to objects to include
polymorphism and inheritance. The ref-
erences to objects in this article are
classified as object-based design, as
defined by Wegner’s distinction of
that term and object-oriented design.[22]

Note that objects without inheritance
and polymorphism are in effect
abstract data types (ADTs), and are
easily implemented in C; C++ is not
necessary.

The algebraic model of a port
automaton and the software abstrac-
tion of an object are combined to cre-
ate the PBO model, as depicted in
Figure 2. A PBO is drawn within a
data-flow diagram as a round-corner

rectangle, with input and output ports
shown as arrows entering and leaving
the side of the rectangle.
Configuration constants are drawn as
arrows entering/leaving the top of the
rectangle. Resource ports are shown as
arrows entering/leaving the PBO
from the bottom.

A PBO executes as an independent
concurrent process, whose functional-
ity is defined by methods of a stan-
dardized object. In C, the objects are
implemented as ADTs. Commu-
nication with other modules is restrict-
ed to its input ports and output ports,
as described above. The configuration
constants are used to reconfigure
generic components for use with spe-
cific hardware or applications.

In addition to input and output
ports, we also define resource ports,
which are needed to create an envi-
ronment for multi-sensor integration.
The resource ports are for modeling
only to show the source or destination
of data that is exchanged with I/O
hardware. In practice, the resource
ports are implemented in a hardware-
dependent manner, as the reads and
writes of the I/O hardware’s registers.
The resource ports connect to sensors
and actuators, allowing the PBO
model to be used to replace the more
traditional POSIX style of device dri-
vers. Details of accessing the sensor or
actuator are encapsulated within the
PBO, resulting in an HD interface
component.

Modelling PBOs to have optional
configuration constants and resource
ports allows the use of the same PBO
model for different types of compo-
nents. A sample library of PBO objects
for robotic manipulators is shown in
Table 1. The library represents a sub-
set of PBOs that were created in a
robotics laboratory at Carnegie
Mellon University.[19]

An important note about the
functional descriptions of the mod-
ules is that the framework is designed
independent of the granularity of
functionality in each PBO. The gran-
ularity is defined by the software

104 DECEMBER 2000 Embedded Systems Programming

sw
 com

ponents

TABLE 1 Example of PBO software components in a library

Name Function Description
rmms Robot interface Hardware-dependent interface to the Recon-

figurable Modular Manipulator System (RMMS)
gfwdkin Generalized forward Compute Forward Kinematics based on the DH-

kinematics parameters obtained during initialization of the module
ginvkin Generalized inverse Computer Inverse Kinematics based on the DH-

kinematics parameters obtained during initialization of the module
tball Trackball interface A hardware-dependent interface to a six-degree

of-freedom trackball
cinterp Cartesian trajectory Given the current measured position and the

interpolator desired final position, compute the intermediate
reference positions

puma Puma interface Hardware-dependent interface to Puma 560 robot
pfwdkin Puma forward kinematics Compute forward kinematics for a Puma 560 robot
pinvkin Puma inverse kinematics Compute inverse kinematics for a Puma 560 robot

FIGURE 2 Diagrammatic model of a port-based object

Configuration constants

Resource ports, for communication with
sensors, actuators, and other subsystems

Variable
input
ports

Variable
output

ports

x1 Port-based object•
•
•xn

y1

ym

•
•
•

PBO

More or less FBP

Apache

Java VM

IBM InfoSphere
Streams

Microsoft Azure
Event Hubs

Python Other

MatLab
Simulink

What is Flow-Based Programming (FBP)

A behavior transforms its inputs governed by its parameters into its outputs

Input Black Box
Behavior Output

A behavior transforms its input(s) into its output(s)

Parameters

Inputs may also be parameters that modify the transformation

What is Flow-Based Programming (FBP)

A behavior transforms its inputs and past outputs as governed by its parameters into its outputs

Inputs Black Box
Behavior Outputs

Parameters

Outputs may be fed back as state to modify the transformation

State Delay

What is Flow-Based Programming (FBP)
Behavior

AData Buffer

Data Buffer

Data Buffer

Inputs

Parameters

Outputs

Behavior
AData Buffer

Data Buffer

Data Buffer Behavior
B

Data Buffer

Data Buffer

Behavior
C

Data Buffer

Data Buffer

Data Buffer

Data Buffer

Behavior
D

Data Buffer

FBP applications (programs) are networks of asynchronous behaviors
 which exchange data across externally defined connections

Behaviors can be reconnected endlessly in different networks without any internal changes

What is Flow-Based Programming (FBP)

Behavior
AData Buffer

Data Buffer

Data Buffer Behavior
B

Data Buffer

Data Buffer

Behavior
C

Data Buffer

Data Buffer

Data Buffer

Data Buffer

Behavior
D

Data Buffer

• FBP = Data Flow Oriented + Component Oriented
• FBP = FP-ish + OOP-ish

• Programming is the declarative composition of networks of behaviors

FBP Variant with DataStore Substrate

Behavior
AData Buffer

Data Buffer

Data Buffer Behavior
B

Data Buffer

Data Buffer

Behavior
C

Data Buffer

Data Buffer

Data Buffer

Data Buffer

Behavior
D

Data Buffer

• Adds configurability, observability, traceability, replayability

From this

To this

Data Store Substrate

Data DataData

Behavior Behavior

Data DataData

Inputs Parms
Outputs Inputs

Parms Outputs

Data Data Data Data Data Data

Outputs

Behavior

Inputs

Behavior

Parms
Outputs

Data Data

Inputs
Parms

Outputs

What is a Flow-Based Programming Framework

• Begins where many other distributed application
architectures are striving to end up.

• Analogous to web application framework.

• Provides syntactic sugar and/or graphical editors to facilitate
the composition and scheduling of behavior networks/graphs

house box1
 framer vehiclesim be active first vehicle_run
 frame vehicle_run
 do simulator motion uuv

 framer mission be active first northleg
 frame northleg
 set elapsed to 20.0
 set heading to 0.0
 set depth to 5.0
 set speed to 2.5
 go next if elapsed >= goal

 frame eastleg
 set heading to 90.0
 go next if elapsed >= goal

 frame southleg
 set heading to 180.0
 go next if elapsed >= goal

 frame westleg
 set heading to 270.0
 go next if elapsed >= goal

 frame mission_stop
 bid stop vehiclesim
 bid stop autopilot
 bid stop me

 framer autopilot be active first autopilot_run
 frame autopilot_run
 do controller pid speed
 do controller pid heading
 do controller pid depth
 do controller pid pitch

Dependency Inversion Principle
Dependency Inversion Principle, Martin 1996

Bad Software Design: Software that fulfills its requirements but exhibits any or all of:

Immobility: Hard to disentangle in order to reuse in another application.

DIP:

Its all about dependency management, duh !!!

Rigidity: Hard to change because each change affects other parts of the system.

Fragility: Making a change causes other parts of the system to break.

HIGH LEVEL MODULES SHOULD NOT DEPEND UPON LOW LEVEL MODULES.

ABSTRACTIONS SHOULD NOT DEPEND UPON DETAILS.

BOTH SHOULD DEPEND UPON ABSTRACTIONS.

DETAILS SHOULD DEPEND UPON ABSTRACTIONS.

http://www.objectmentor.com/resources/articles/dip.pdf

Dependency Inversion Principle Transcendence

Flow-Based Programming transcends the DIP thusly:

Bad Software Design: Software that fulfills its requirements but exhibits any or all of:

Immobility: Hard to disentangle in order to reuse in another application.

Rigidity: Hard to change because each change affects other parts of the system.

Fragility: Making a change causes other parts of the system to break.

THERE ARE NO MODULES, JUST COMPONENTS

THERE ARE NO ABSTRACTIONS OR DETAILS JUST DATA

COMPONENTS DEPEND ON DATA, NOT OTHER COMPONENTS

One Dependency: DATA

Data Store Substrate

Data DataData

Behavior Behavior

Data DataData

Inputs Parms
Outputs Inputs

Parms Outputs

Data Data Data Data Data Data

Outputs

Behavior

Inputs

Behavior

Parms
Outputs

Data Data

Inputs
Parms

Outputs

Replacement Independence

Because partitioning occurs intra-process/intra-host instead of inter-process/inter-host,
distribution of behaviors across processor resources does not change behavior internals

Replacement Independence = Dependency Minimization

Replacement Independence = Flexibility, Robustness, Mobility

Behaviors (components) can be externally connected without any internal changes.

Composition of complex networks/graphs is conceptually simple

Meta Architecture Pattern

Data Store Substrate

Data DataData

Behavior Behavior

Data DataData

Inputs Parms
Outputs Inputs

Parms Outputs

Data Data Data Data Data Data

Outputs

Behavior

Inputs

Behavior

Parms
Outputs

Data Data

Inputs
Parms

Outputs

RealTime Database BAAS

ReST URI

Client Client

ReST URI

JSON JSON

Enterprise Service Bus

Sink

Client Client

Source

Event Event

Client

Source

EventInternet

Message Broker

Topic Topic

Producer Consumer

Topic

Message/Event Message/Event

Topic

MicroService Server

ReST URI

Client Client

ReST URI

JSON JSON

MicroService Server

ReST URI

Client Client

ReST URI

JSON JSON

MicroService Server

ReST URI

Client Client

ReST URI

JSON JSON

PubSub Hub Server

Topic Topic

Publisher Subscriber

Topic

Pub Sub

Topic

10/25/13 Samuel Smith 242 East 600 North Lindon Utah 84042 USA smith.sam@samuelsmith.org

Complexity Management

20

Real Complexity = number of dependencies between elements of a software system

Apparent Complexity = number of dependencies that programmers must manage
 in order to make meaningful enhancements to software functionality

Perceived Risk = peril the programmer faces when attempting to add
 meaningful enhancements to software functionality.

10/25/13 Samuel Smith 242 East 600 North Lindon Utah 84042 USA smith.sam@samuelsmith.org 21

Scalability
Higher	
 levels	
 of	
 capability	
 increase	
 real	
 complexity	
 and	
 may	
 increase	
 apparent	
 complexity.	
 	

The	
 principle	
 limita8on	
 is	
 programmer	
 capacity	
 not	
 computa8onal	
 capacity

Distributed Application Menagerie

• Pub/Sub Message Broker (Rabbit MQ, AMQP, ZeroMQ)
• Task Scheduler (Celery, BeanStalk)
• Key Value Store, Database (Reddis, Couch, Mongo, River, …)
• Resource Manager (Zookeeper)
• Data Flow Processor (Storm, Elastic, …)
• Services (ReST web, WebRTC, Soap, …)

Autonomous Underwater Vehicles

Autonomous Underwater Vehicles

Shipboard & Building Automation

 DSL

Convenient Declarative Syntax (3rd Generation)
– Unified Scheduling and Execution
– Integrated Pub/Sub, Messaging,
– Observable/Traceable
– Nested Concurrent Contexts

Marshaling, Configuration, Logic, Flow, Execution, and Scheduling

all in one place

Line Oriented, Contextual, Declarative Configuration Language

Declaration Sentence: verb [object] [prepositional-phrases]

set speed to 5

[adjectives …] kind

frame build in setup

framer create at 0.5 be active first build

done

Verb Object: do salt eventer

not block oriented

Contexts:
Frame of Reference “Framing” Action Execution “Actioning”
house

framer

frame
frame

frame

frame
enter

recur

exit

set

do

stop

set

do

Z

X

g

Y

h d e

W

i f

b c

Hierarchical State Machine Tree

a

Hierarchical State

a

b

c

d

e

f

g

i

h

Flat State Machine
Relatively High Apparent Complexity

a

b

c

d

e

f

g

i

h

Hierarchical State Machine
Relatively Low Apparent Complexity

Z

Y

X

W

Transition = Change in Framing Context

go foobar if elapsed >= goal

Z

X

g

Y

h d e

W

i f

b c

Hierarchical State Machine Tree

a

	
 Dichotomous	
 Priori8es

Ac8ons	

Determine	
 Contextual	
 Behavior,	
 Specificity	

Priority	
 is	
 BoCom-­‐Up

Z

X

g

Y

h d e

W

i f

b c

Hierarchical State Machine Tree

a

Transi8ons	

Change	
 Context,	
 Propriety	

Priority	
 is	
 Top-­‐Down

Reliability
Reliable Services Envelope

High Level Frames - Programmed by Experts

Common Generic
Programmed by Experts

Mission Specific
Programmed by Non-Experts

Action

Action

Action

Failure Checks Failure Handling

Action

	
 Incremental	
 Encapsula8on

Framing

Auxiliary	
 Framers

Master/Slave	
 Framers

Nested	
 Frames

Framers

Ac*oning

FloScript	
 Verbs

Ioflo	
 library	
 Python	
 Ac8ons/Behaviors	
 for	
 do	
 verb	
 objects

Custom	
 Python	
 coded	
 do	
 verb	
 objects

Custom	
 coded	
 Python	
 C	
 Extensions	
 for	
 do	
 verb	
 objects

componentsconcurrency

Universal Name-Spaced Pub/Sub Interface for Intra application communication

Addressing Modes:

high replacement independence

direct indirect-absolute
put name sam eyes blue into .person.detail

set speed by blue in myapp.setup
indirect-relative-implied indirect-relative-root

direct indirect-relative-frame

put name sam eyes blue into detail of frame start

direct indirect-relative-framer

put true into good of framer

RAET Reliable Asynchronous Event Transport

• RAET
• Micro threaded architecture with non-blocking I/O
• Micro threaded Event Pub/Sub separate from socket based transport layer
• UDP sockets
• Better observability and management of performance under load
• Transactions
• Unix domain sockets for interprocess communications

https://github.com/RaetProtocol/raet

https://github.com/RaetProtocol/raet

References

http://ioflo.com
https://github.com/ioflo
https://github.com/ioflo/ioflo_manuals

http://www.jpaulmorrison.com/fbp/
http://www.jpaulmorrison.com/fbp/links_external.html
https://flowbasedprogramming.wordpress.com/article/flow-based-programming/
http://www.amazon.com/Flow-Based-Programming-2nd-Application-Development/dp/
1451542321/ref=sr_1_1?ie=UTF8&qid=1427910581&sr=8-1&keywords=flow+based
+programming

 http://wiki.ros.org/ROS/Tutorials

http://ioflo.com
https://github.com/ioflo/ioflo_manuals
http://www.jpaulmorrison.com/fbp/links_external.html
https://flowbasedprogramming.wordpress.com/article/flow-based-programming/
http://www.amazon.com/Flow-Based-Programming-2nd-Application-Development/dp/1451542321/ref=sr_1_1?ie=UTF8&qid=1427910581&sr=8-1&keywords=flow+based+programming
http://wiki.ros.org/ROS/Tutorials

Backup Slides

 Big Picture
House

Data Store

Framer
Frame
Action
Action
Action

Framer
Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

External
Interface

Storage
Drive

House
Monitor

Data
Monitor

I/O
Devices

Framer
Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

Framer
Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

Framer
Frame
Action
Action
Action

External
Interface

External
Interface

House
Tasker

Remote
Command

House
Framer

Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

Frame
Action
Action
Action

Data Store Data Store Data Store

External
Interface

External
Interface

External
Interface

Server
IP

Logger
File

Example

$ pip install ioflo

$ ioflo -h

usage: ioflo [-h] [-v VERBOSE] [-p PERIOD] [-r] [-V] [-n NAME] [-f FILENAME]
 [-b [BEHAVIORS [BEHAVIORS ...]]] [-U USERNAME] [-P PASSWORD]

Runs ioflo. Example: ioflo -f filename -p period -v terse -r -h -b 'mybehaviors.py'

optional arguments:
 -h, --help show this help message and exit
 -v VERBOSE, --verbose VERBOSE
 Verbosity level.
 -p PERIOD, --period PERIOD
 Period per skedder run in seconds.
 -r, --realtime Run skedder at realtime.
 -V, --version Prints out version of ioflo.
 -n NAME, --name NAME Skedder name.
 -f FILENAME, --filename FILENAME
 File path to FloScript file.
 -b [BEHAVIORS [BEHAVIORS ...]], --behaviors [BEHAVIORS [BEHAVIORS ...]]
 Module name strings to external behavior packages.
 -U USERNAME, --username USERNAME
 Username.
 -P PASSWORD, --password PASSWORD
 Password.

house box1
 framer vehiclesim be active first vehicle_run
 frame vehicle_run
 do simulator motion uuv

 framer mission be active first northleg
 frame northleg
 set elapsed to 20.0
 set heading to 0.0
 set depth to 5.0
 set speed to 2.5
 go next if elapsed >= goal

 frame eastleg
 set heading to 90.0
 go next if elapsed >= goal

 frame southleg
 set heading to 180.0
 go next if elapsed >= goal

 frame westleg
 set heading to 270.0
 go next if elapsed >= goal

 frame mission_stop
 bid stop vehiclesim
 bid stop autopilot
 bid stop me

 framer autopilot be active first autopilot_run
 frame autopilot_run
 do controller pid speed
 do controller pid heading
 do controller pid depth
 do controller pid pitch

$ ioflo -v terse -f box1.flo

Starting mission from file box1.flo...
 Starting Framer vehiclesim ...
To: vehiclesim<<vehicle_run> at 0.0
 Starting Framer mission ...
To: mission<<northleg> at 0.0
 Starting Framer autopilot ...
To: autopilot<<autopilot_run> at 0.0
To: mission<<eastleg> at 20.0 Via: northleg (go next if elapsed >= goal)
 From: <northleg> after 20.000
To: mission<<southleg> at 40.0 Via: eastleg (go next if elapsed >= goal)
 From: <eastleg> after 20.000
To: mission<<westleg> at 60.0 Via: southleg (go next if elapsed >= goal)
 From: <southleg> after 20.000
To: mission<<mission_stop> at 80.0 Via: westleg (go next if elapsed >= goal)
 From: <westleg> after 20.000
 Stopping autopilot in autopilot_run at 80.000
 Stopping vehiclesim in vehicle_run at 80.125
 Stopping mission in mission_stop at 80.125
No running or started taskers. Shutting down skedder ...
Total elapsed real time = 0.2099
Aborting all ready taskers ...
 Aborting vehiclesim at 80.125
 Tasker 'vehiclesim' aborted
 Aborting mission at 80.125
 Tasker 'mission' aborted
 Aborting autopilot at 80.125
 Tasker 'autopilot' aborted

Intelligent Autonomy-Autonomic-Automation Programming Framework

Flow Based Programming Framework

Automated Reasoning Engine

Automation Operating System

Micro Threaded Concurrent Execution Engine With Non Blocking I/O

Hierarchical Action Framework

Dependency Injection Framework

FloScript: DSL for Convenient Configuration

Open Source: MIT License - ioflo.com - github.com/ioflo

Universal PubSub

Discrete Event Simulation Framework

Machine Learning - Machine Intelligence Infrastucture

http://ioflo.com
http://github.com/ioflo

