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1.  Introduction
e principle motivation for io"o is to make it much easier to implement automated reasoning
soware that achieves higher levels of meaningful intelligent autonomy in automation, autonomous
agent, robot or other related soware systems. e key word here being meaningful, that is, intelligent
autonomy thats purposeful and useful, instead of just being clever or novel. It is our opinion, based
on years of observation and participation in autonomous vehicle and automation system soware
development, that the primary barrier to higher levels of meaningful intelligent autonomy is
programmer capacity not processor capacity. It is primarily an issue of the apparent complexity and the
perceived risk to the programmer. 

We de$ne apparent complexity as the number of dependencies between elements of a system that a
programmer must manage in order to make meaningful enhancements to the soware functionality.
In contra-distinction, we de$ne real complexity as the total number of dependencies between
elements of a system. is de$nition is coherent with standard metrics for soware complexity. e
ratio of apparent complexity to real complexity for a given system architecture is a measure of the
"goodness" of the architecture's design. A relatively low ratio indicates a better architecture. Indeed,
achieving low apparent complexity relative to high real complexity is the primary goal of io"o. 

Similarly, the perceived risk is the peril or exposure to loss the programmer faces when attempting to
add meaningful enhancements to the autonomous vehicle soware. 

e perceived risk includes 1) the estimated programmer time needed to develop and test any code
changes, 2) the additional parameters needed to manage mission con$guration, as well as 3) the
exposure to failure or loss from bugs or other unintended consequences of the changes. Because of
the hazardous and unpredictable nature of at-sea operations, the exposure to failure and loss for sea-
going autonomous vehicles is very real. Adding higher levels of intelligent autonomy increases the
real complexity of the system and unless carefully designed also increases the apparent complexity.
High levels of apparent complexity increase the perceived risk because failures are more likely to
occur when the programmer cannot successfully manage all the dependencies. 

erefore, with good reason developers of autonomous vehicle soware are fearful, cautious, and
circumspect when it comes to adding more intelligent autonomy capability. Indeed, developers will
go to great lengths to $nd workarounds that achieve mission objectives without using high levels of
intelligent autonomy. us, the actual levels of intelligent autonomy found in sea-going unmanned
vehicles is quite low despite the many well known methods that could be used given the usable
processor capacity. Given the risks involved and the difficulty in understanding the constraints
associated with all the vehicle sub-systems (especially with regard to safety), the process of integrating
new capability onto a real platform is very complex. 

Architectures that scale well with respect to complexity, keep apparently complexity low as real
complexity increases. Recall that we de$ned real complexity as the actual number of dependencies.
Whereas apparent complexity as the number of dependencies in the system that the programmer
must manage, track, or understand in order add capability. us good architectures manage or hide
dependencies so the programmer can make changes without much risk. Inevitably, however, adding
certain capabilities will break an architecture such that the new dependencies are no longer hidden or
well managed and development then hits a complexity barrier which it usually cannot cross without
changing the architecture. e drawing below illustrates how autonomy architectures map real
complexity onto apparent complexity and the resulting apparent complexity barrier. 
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Fig.1.1:  Real to Apparent Complexity Mapping. Complexity Barrier.

Much of the "intelligent autonomy" research done by others especially in in non-underwater,
academic, or laboratory settings or settings is not meaningful because they do not ever have to
address the complicating constraints or "real" world operation. Likewise, the risk of change, in these
setting is so much lower that perceived risk is not a signi$cant constraint on programmer capacity.
Consequently many of these efforts have not yet overcome the apparent complexity barrier; they
haven't had to stress their architectures enough to reach it. Many intelligent autonomy architectures
do not scale well enough with regard to complexity to allow them to cross this barrier. Having
crossed this barrier several times for different $elded autonomous vehicle platforms, we observed a
convergence in the feature set of a practical meaningful intelligent autonomy architecture. Indeed,
apparent complexity is a key design issue that must be managed in order to cost effectively add
meaningful intelligent autonomy capabilities. 

us the $rst step in increasing the level of meaningful intelligent autonomy is to provide a
framework that signi$cantly reduces apparent complexity and perceived risk to the programmer for
adding meaningful intelligent autonomy. e primary motivation for io"o is to help provide just such
a framework. e io"o framework is just one piece of the puzzle but the core foundation upon which
applications are built.

2.  Managing Complexity rough Dependency Reduction
One key to complexity management is dependency reduction, that is, reduce the number of
dependencies between components in the system so that changes do not cascade to a point where the
time and the effort required to make a change is prohibitive. Since dependencies arise from
interaction or exchange of information and data between components of the system, the mechanism
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used for information exchange between soware components will have the greatest effect on the
number and type of dependencies. 

Consider, for example, a one-to-one information exchange between two soware components, A and
B. In order for either A or B to exchange new information with the other, one or the other of A and B
must know three things; 1) the identity of the other component and, 2) the information exchange
interface with the other component, and 3) the new information to be exchanged. A dependency
between two items means that anytime one item changes, the other item also changes. us, a one
way transfer of information from object A to B involves managing three potential dependencies,
these are: component identity (or identity for short), exchange interface (or interface for short), and
new information (or information for short). Since the purpose of the exchange is to transfer new
information from one to the other, the information dependency will always be visible. e trick is to
hide as much as possible the other two potential dependencies.

e key to managing both the identity and interface dependencies is controlling how the associated
information exchange is initiated. ere are two ways to initiate an exchange of new information
from A to B:

 1) A pushes the new information to B or, 

2) B pulls the new information from A.

In either case of push or pull, if the interface between A and B changes then both A and B must be
changed, so a changeable interface always increases apparent complexity. By change we mean
something the soware programmer must manage such as a code or con$guration modi$cation and
therefore contributes to apparent complexity. 

In the case of push, a change to the identity of A, where A is replaced with a different soware
component or is moved to a different location or address, does not require a change to B, but a change
to the identity of B does require a change to A. In this case, when the identity of B changes, the
requisite change to A may be to A's con$guration or its code or something else to enable A to know
the new identity of B. Depending on how A is built or linked, a change to A's code or con$guration
may result in a change to A's identity (location) which would then propagate changes to any other
components that had identity dependencies on A. To summarize, in the case of push, the identity
dependency is one way, in the sense that, A is dependent on B, but B is not dependent on A. So if we
can guarantee that the identity of B will always be $xed then the dependency is effectively hidden,
thereby reducing apparent complexity. 

Correspondingly, in the case of pull, a change to the identity of A, does require a change to B, but a
change to the identity of B does not require a change to A. us, in the case of pull, the identity
dependency is still one way but in the opposite direction, that is , A is not dependent on B, but B is
dependent on A. So if we can guarantee that the identity of A will always be $xed then the
dependency is effectively hidden, thereby reducing apparent complexity.

Likewise if the direction of information exchange is reversed, that is, the new information goes from
B to A, then the component initiating the push and pull respectively changes as well as the direction
of the dependencies. One way to keep track of this is give a label, such as downstream or upstream, to
the direction of a dependency with respect to the direction of the information exchange between any
two components. A downstream identity dependency of component A on component B, means that
for new information "owing from A down to B, A is dependent on B, or in other words, a change to
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the identity of B requires a change be made to A. Symmetrically, an upstream identity dependency of
component B on component A, means that for new information "owing from A down to B, B is
dependent on A, or in other words, a change to the identity of A requires a change be made to B.

e relative apparent complexity of One-to-one exchanges may be considered symmetric with respect
to push or pull, that is, if the identity of either A or B or the direction of information "ow may change
then the apparent complexity of push or pull is the same, both cases have the same number of
potential apparent dependencies. Only in the case that, the information "ow direction is $xed and the
identity of one of A or B is $xed then, depending what is $xed, one of push or pull will have lower
apparent complexity.

Now consider how the complexity changes with respect to one-to-many or many-to-one information
exchanges. 

First consider a one-to-many exchange of new information from component A to all of components
B, C, D, ... . 

In the case of push, if the identity of either B, C, D, ..., changes then A must change. But A may
change without requiring any change to B, C, D, ... . e more components B, C, D, ... however, the
more likely that one of them will have to be changed at some point, thus making it difficult to require
that all of B, C, D, ... remain $xed. us, the more components B, C, D, ... that A is dependent on
makes it more likely that A will have to change thus propagating changes upstream of A to any
components dependent on A.

Alternately, in the case of pull, the identities of all of B, C, D, ... could change without A changing.
However, if the identity of A changes then all of B, C, D, ... must change, which would cascade
changes to any components dependent on all of B, C, D, ... us it would be advantageous if A could
be $xed. Consequently, pull is likely to have lower apparent complexity versus push since only A has
to be $xed with pull.

Next consider a many-to-one exchange of new information from any of components W, X, Y, etc.
down to component Z. A many to one exchange is more complicated, in that there are many items of
new information being exchanged. So the role of Z is important. Consider the case where Z is a
selector or consolidator of the new information it receives. In other words, Z sends out only one item
of new information to Z's downstream components when it receives multiple items of new
information from upstream W, X, Y, ... . 

In the case of push, any of the identities of W, X, Y, ... may change without requiring a change in Z as
long as Z can accommodate a variable number of upstream components. But a change in the identity
of Z would require a change to all of W, X, Y, ..., which would propagate to all the components
dependent on W, X, Y, ... . us it would be advantageous if Z could be $xed. Consequently, push is
likely to have lower apparent complexity versus pull since only Z has to be $xed with push. 

ese various dependency relationships are shown in the $gure below.

Going downstream, if the one could be $xed, one-to-many exchanges should be pulled and many-to-
one should be pushed to reduce apparent complexity. But if we consider the case where information
exchanges are chained together then we have a problem since the $xed recipient of one exchange
would have to be the un$xed sender of the next exchange. e solution is to separate the identity of
the component from the identity or location of the information exchange interface and then devise a
scheme such that the identity of the information exchange interface is always $xed but the
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components using the interface can change identities. One well known successful way to accomplish
this with what is called a publish subscribe system.
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Fig.2.1:  Dependency Types

2.1.  Pub/Sub Dependency Decoupling

Publish and subscribe (also called producer-consumer) systems, get rid of both the interface and
identity dependencies by using what could be called a shared database, an information registry, a data
exchange, or shared data store. We use the term Shared Data Store or Store for short. Each item of
information in the Store has a public identity that is $xed. For a given item of information, a
component may be either a publisher or subscriber. A publisher sends or writes new data to the item.
A subscriber retrieves or reads data from the item. Both the identity of and the interfaces to the Store
are $xed for a given item of information thereby nulling out the dependencies. All dependencies go
from components to the Store. Information "ow is always either pushed from components to the
Store or pulled by components from the Store, but not between components directly. Consequently,
changing or replacing a component does not require changing any other component so apparent
complexity is minimized. Some call this feature replacement independence. It is a measure of the
extent that connections be changed without the components needing to know about the change. High
degrees of replacement independence means that a component can be replaced with a minimum of
other changes in the system. Indeed, we see a convergence of best practices in complex soware
systems, especially distributed ones, to publish-subscribe like architectures (DoD GIG, DDX, RTPS,

www.io!o.com -7-



DDS, OMG Corba, Etc). We believe the attraction of pub/sub systems arises from this unstated or
little understood lowering of apparent complexity via dependency reduction. 

Recall that from the perspective of data or information "ow there are two types of dependencies,
downstream and upstream where down is on the output side of a component's data "ow and up is on
the input side of a component's data "ow. A pub/sub Store removes all downstream dependencies
since any publisher does not need to know who the subscribers are to the data in order to publish it.
A pub/sub data share, also removes upstream dependencies for one-to-many exchanges, where there
are multiple subscribers to the same item of information. A pub/sub system may also remove
upstream dependencies for many-to-one exchanges where there are multiple publishers of the same
item of information, as long as traceability is not required. 

Traceability means that any changes in the system's behavior can be traced to the component or
components responsible for the change. is is an essential feature of any reliable autonomous
system. In a pub/sub system all changes in behavior can be reduced to information exchanges.
erefore, from an information exchange perspective, traceability means recursively identifying who
the publisher is for an item of information. One easy way to ensure traceability is to enforce that each
item of information has one and only one publisher (one writer rule). Given this traceability
constraint, pub/sub systems have a problem when it is desirable to have multiple producers of the
same item of information as would be the case if one had redundant sensors. If there are multiple
publishers of the same item in the data share then a consumer has no easy way of tracing who was
responsible for a change in the item (without adding an upstream dependency that is dynamically
tracking the identity of the publisher). Consequently, each publisher must have a unique item in the
data share. is means that each subscriber must have multiple subscriptions, one for each producer,
which adds upstream dependencies to the subscriber. Subscribers must be changed every time a
producer is added or removed. 

2.2.  Arbiter Decoupling

One way to remove this type of upstream dependency, when traceability is required, is to use a
component we call an information arbiter. e arbiter is responsible for either switching or
combining information or data "ows from multiple publishers based on arbiter parameters that are
also published items. e output of each arbiter is a single item in the data share. Downstream
subscribers need only subscribe to the output of the arbiter. If another publisher of information
used by the arbiter is added or removed the arbiter changes but nothing downstream. Each input to
the arbiter is a distinct item in the data share and can be traced. Traceability comes from logging the
parameters of the arbiter to know when a change in arbitration occurred. is happens much less
oen than changes to the inputs of the arbiter. Using arbiters is much simpler than dynamically
tracking multiple publishers all overwriting the same item of information. is removal of upstream
dependencies using arbiters is shown below. We call this feature of removing both upstream and
downstream dependencies through the use of a pub/sub shared data store and arbiters, dependency
decoupling.
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Fig.2.2:  Down and Up Stream Dependency Decoupling via Shared Data Store and Arbiters 

An example of an Arbiter component is shown below.

Fig.2.3:  Information Arbiter
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Fig.2.4:  Interconnect of Components rough Data Share

A Shared Data Store does not have to be centralized. A distributed Store consists of nodes. Each node
has a local copy of only the information that it needs. Each local Store is responsible for updating all
other Node’s copies of the same information. By default information in the Store is considered to be
the best available at the time. In this case users of the data must be robust to the fact that data are not
necessarily synchronized and coherent across the system. In cases where needed, and with extra
effort, portions of the Store could be synchronized. 

e Store provides the equivalent of a virtual distributed registry for information produced by other
components of the system. e Store also provides a transparent interface to the external world. All
information in the Store is observable by any subscriber. By storing the appropriate information in
the Store the system becomes traceable. e Store provides certain vital book keeping functions such
as time stamps and atomicity of structures and thereby provides a simple transparent way to provide
remote monitoring and supervisory control. Resource management is abstracted into the much
simpler concept of item ownership. e owner is the component authorized to change or write
(publish) to a particular item in the Store. Transfers of ownership can be tracked and logged thereby
providing traceability.

2.3.  Other Techniques for Dependency Reduction

Another way of describing low apparent complexity is high transparency. A transparent system does
not have a lot of details that block one's view of the system operation or that one must understand to
understand the system. e amount of overhead and explicit details (dependencies) that must be kept
track of by a component to exchange information with another is low. A transparent system also
allows one to examine the critical dependencies or feature when needed.

Another way to reduce apparent complexity and perceived risk is by using late binding. In this
context binding occurs when the information exchange between components becomes $xed. By late
or early binding it is meant the point in the development and testing process when connections get
$xed, such as, compile time, load time, install time, or run time. Usually, the later the binding the
better. 

Complexity is further reduced if the total number of different types of building blocks or components
is small but can be combined or interconnected in a "exible manner. is is called power of
expression.
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2.4.  Core Architecture

All of these techniques for dependency reduction described above have been employed in the core
architecture that io"o and "oscript were designed to support. In summary, the core architecture of
which io"o is a component consists of recon$gurable component soware modules that interface
with a publish/subscribe shared data store and are scheduled by the HAF (hierarchical action
framework) of io"o. ese soware components allow convenient expression of control and planning
algorithms as well as transparent monitoring, logging, and replay through the distributed publish/
subscribe shared data store. e dependency reduction arising from modular components interfacing
to a common store signi$cantly reduces apparent complexity. e architecture infra-structure is
unique in that it seamlessly uni$es the scalable distributed data "ow or port based component
paradigm with the power and expressiveness of hierarchical discrete event systems. e architecture
enables the formation of almost any semi-autonomous command and control system organization in
a highly convenient manner. 
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Fig.2.5:  Core Component Based Pub/Sub Architecture

3.  Hierarchical "State Machine"
In addition to information exchange an autonomy architecture needs a way of con$guring,
organizing, scheduling, sequencing, and evaluating sensing, command, and control components.
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Each component action, agent, controller, etc in an autonomous command and control system using
conventional computation equipment is at some level a form of state machine. We use the term "state
machine" loosely here. By Hierarchical State Machine we mean a means of describing the evolution of
a system through various states where those states are composed in a hierarchical manner. is is the
sense used by StateCharts and UML (Uni$ed Modeling Language). "State machines" provide a very
convenient formalism for modeling component behavior. Moreover, autonomous control usually
involves some sort of mission plan, that is expressed as a sequence of stages or activities, in other
words a form of state machine as well. Various architectures use different levels of granularity to
express this stages along a spectrum from a list of waypoints to general goal based behaviors like
sweep and loiter. 

Whether explicit or implicit, any autonomy soware architecture running on a computer platform is
a hierarchy of state machines. Moreover, human cognition is limited in how many distinct pieces of
information can be thought of at one time. us it is difficult for a human to perceive simultaneously
all the constituents of a complex system. Hierarchical composition/decomposition is one way, if not
the only way, for humans to design and manage complex systems. More complex systems are built up
from simpler subsystems where the mutual dependencies at each level are simple enough to be
managed. Indeed it is the lack of a sufficiently general and "exible mechanism for hierarchical
composition of the soware components that eventually limits many autonomy architectures thus
creating an apparent complexity barrier.

Since hierarchical composition is the "natural" way for humans to design complex systems, one would
need a very compelling reason to use any other architecture. From a mission planning soware
perspective this means that a hierarchical state machine would appear to be the most appealing
approach. Indeed, the Uni$ed Modeling Language (UML) has at its core a hierarchical state machine
modeling paradigm. We spent several years as part of a DoD funded research project comparing
different high level command and control architectures with the conclusion that a universal
command architecture could be expressed most conveniently using a hierarchical state machine
formalism. Indeed hierarchical state machines are an excellent mechanism for dependency reduction.

Consider the following diagram. One the le side is a "at state machine, on the right side is an
equivalent hierarchical state machine. Although the number of actual state transitions is the same the
apparent number of state transitions in the hierarchical state machine is an order of magnitude less.
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e actual evaluation of a hierarchical state machine, however, is not so simple. In a "at state
machine, a state transition only needs to know about two states, the state being exited and the state
being entered. In a hierarchical state machine a state is not simple. It is made up of several sub-states.
We call them frames. A given state is then an ordered list of frames. A state transition involves
resolving which frames are exited and which are entered from two ordered lists of frames. is is
shown in the $gure below.
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Fig.3.1:  HSM Transition Paths

In order to use a hierarchical state machine (HSM) in a manner that truly reduces apparent
complexity, there needs to be a convenient formalism for expressing and evaluating the HSM that
hides the complexity of the transitions. If each HSM has to be hand craed then there is still a
complexity barrier. Indeed, the motivation for "oscript is to provide such a convenient formalism. 

Unmanned vehicle control systems must also employ "safety jackets", that is, failure and error
handling routines that are oen speci$c to a particular stage of a mission. A hierarchical state
machine provides a uniquely convenient formalism for encoding these higher priority safety jackets
without complicating the user programmed mission stages. We call this a reliable services envelope.
e reliable services envelope is programmed by experts who understand the autonomous vehicles
systems in detail. e reliable services envelope enables non experts to safely program the mission
speci$c stages of behavior without an expertly detailed understanding of the vehicle systems.
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